Evaluation of *Bacillus thuringiensis* for Management of Adult Emerald Ash Borer (*Agrilus planipennis*) on Ash Trees

> Dave Matthews Canadian Urban Forest Conference October 1st, 2014

The Emerald Ash Borer (EAB)

From http://www.emeraldashborer.info

- Exotic pest of ash trees native to Asia
- Found in Michigan and Ontario in 2002
- Currently 23 additional US states as well as Quebec have EAB infestations

From http://www.emeraldashborer.info/map.cfm#

The Emerald Ash Borer (EAB)

- 1-2 year life cycle
- EAB damage to ash trees
- Treatment options limited
 - Systemic treatments
 - Parasitoid wasps
 - Removal of infested trees
- Economic impacts
 - Estimated 2010-2020 cost of US \$12.4B to remove/replace landscape ash trees
 - Decreased property values

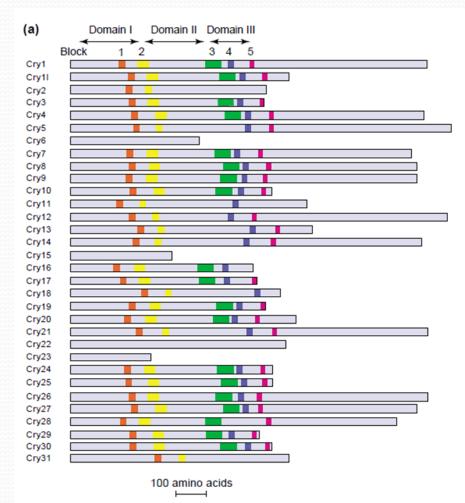
Photos by Jerry Dowding, Canadian Food Inspection Agency, and David Cappaert, Michigan State University



Bacillus thuringiensis (Bt)

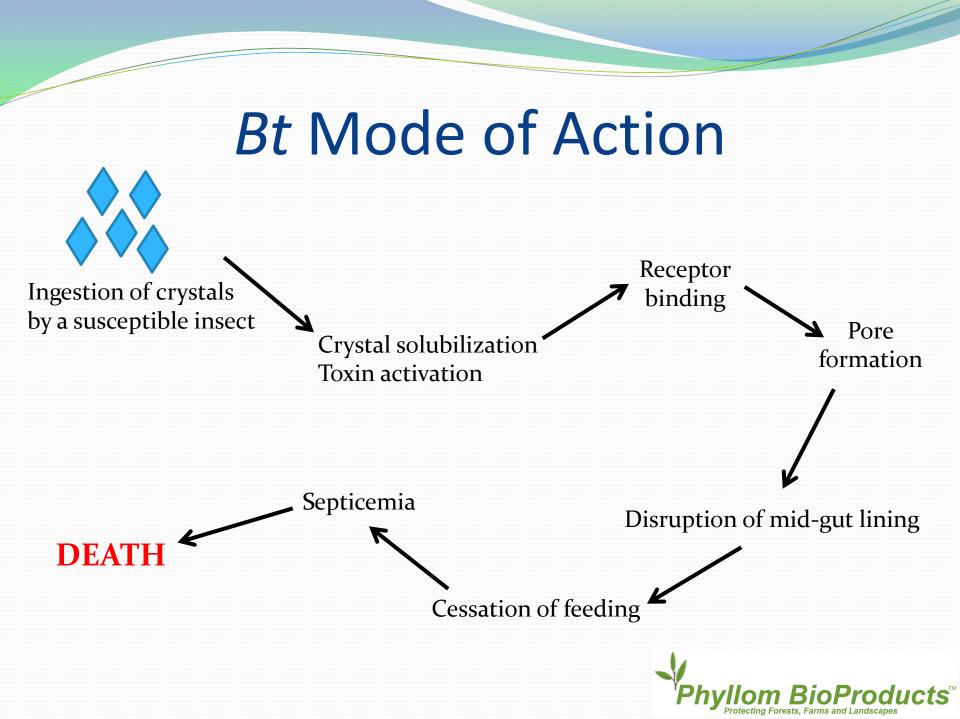
- First isolated in 1901 by Ishiwatari from diseased silkworms (*Bombyx mori*)
- Isolated again in 1911 by Berliner from a diseased Mediterranean flour moth larvae (*Ephestia keuhniella*)
 - Named after German province of Thuringia
- Over 82 serovars
- Produces crystal composed of δ-endotoxin (Cry protein) during sporulation
- Spore/crystal mixtures used to formulate biological insecticides

From http://bacillusthuringiensis.pbworks.com/ w/page/9916080/FrontPage



Microscopy by Jim Buckman

Cry Toxins


(b)

Ш

From de Maagd et al. 2001. Trends Genet. 17:193-199

Bt galleriae SDS-502

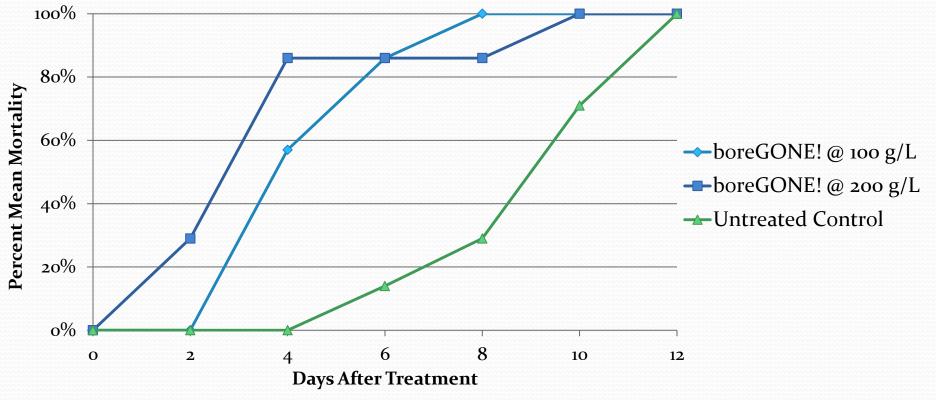
- Isolated in 2002 by Asano
- Produces Coleopteran-active Cry8Da
- Active against both larvae and adults
- Toxin binds to glucosidase in adult Japanese beetles
- Used by Phyllom BioProducts to produce:
 - boreGONE![®]
 - beetleGONE! ag[™] / beetleGONE! tlc[™]
 - grubGONE!®

Cry8Da is Active Against Adult EAB

• LD₅₀ of *Btg* SDS-502 crystal/spore mixture in EAB adults dosed using a droplet imbibement bioassay

Bioassay	LD ₅₀ (95% CI) (µg Cry8Da)	Slope	Pearson χ ²	n
Rep. 1	0.22 (0.15-0.34)	2.2	1.58	90
Rep. 2	0.25 (0.14-0.88)	1.2	0.03	90
Combined	0.23 (0.16-0.35)	1.6	0.53	180

Study performed by Leah Bauer, USDA Forest Service and Michigan State University



Field Trial of boreGONE!® Sprayed on Potted Ash Trees

- Two rates: 100 and 200 grams/liter
- Small ash trees growing inside a hoop house under a shade cloth were hand sprayed onto until the foliage was completely wet
- Foliage collected on Days 0, 1, 2, 4, and 7 post-treatment
- Seven adult EAB male-female pairs/replicates used per treatment and the untreated control

Adult EAB Mortality Over Time Post-treatment

bore GONE!® Lowers Adult EAB Longevity

Treatment	Mean Adult Longevity (Days) ¹	
boreGONE! @ 100 g/L	5 a	
boreGONE! @ 200 g/L	3 a	
Untreated Control	9 b	
Significance:	F=26.69	
	P<0.001	

¹Means followed by the same letter are not significantly different. (P<0.05: Holm-Sidak method)

boreGONE![®] Lowers Time of Adult EAB Feeding Activity

Treatment	Mean Adult Feeding Activity (Days) ¹	
boreGONE! @ 100 g/L	7 a	
bore <i>GONE!</i> @ 200 g/L	6 a	
Untreated Control	14 b	
Significance:	F=37.4	
	P<0.001	

¹Means followed by the same letter are not significantly different. (P<0.05: Holm-Sidak method)

boreGONE![®] Lowers Adult EAB Damage to Ash Foliage

Treatment	Mean Leaf Tissue Consumed (%) ^{1, 2}	Mean Frass Produced (mg) ¹
boreGONE! @ 100 g/L	3.33 ab	44 ab
boreGONE! @ 200 g/L	2.61 a	33 a
Untreated Control	5.73 b	68 b
Significance:	F=4.26	F=5.72
	P=0.031	P=0.012

¹Means followed by the same letter are not significantly different. (P<0.05: Holm-Sidak method) ²Seven measurements per leaf

2014 bore GONE!® Aerial Trial

- Assess ability of boreGONE![®] to knock down population of subsequent EAB generation
- Made two aerial applications of boreGONE![®] on EAB-infested ash trees in Starved Rock State Park, Utica, IL
- Sprayed in late June/early July during peak flight as determined by day degree models
- Sprayed 16 acres at 7.5 lbs./acre
- Pre- and post-spray branch sampling in progress to assess effect

Conclusions

- boreGONE![®] is a new tool for controlling Emerald ash borer infestations
- The Cry8Da crystal protein in boreGONE![®] is highly active against the adult Emerald ash borer
- Feeding boreGONE![®]-sprayed ash foliage to adult Emerald ash borer resulted in:
 - Lower longevity
 - Lower feeding activity
 - Less foliar damage

Acknowledgments

- Morton Arboretum/Joliet Junior College
 - Fredric Miller
- USDA Forest Service/Michigan State University
 - Leah Bauer
 - Deborah Miller
 - Diana Londono
- Phyllom BioProducts
 - John Libs
 - Kurt Schwartau

