

Metro Vancouver Urban Forest Climate Adaptation

Amelia Needoba, Senior Urban Forester

Canadian Urban Forest Conference

September 28th, 2016

Report authors: Amelia Needoba | Edward Porter | Camille Lefrançois | Dr Cynnamon Dobbs | J. Brett Allen | Trevor Cox | Mike Coulthard

Metro Vancouver Project Manager: Erin Embley | Josephine Clark

Today's presentation

- Why this project?
- The process
 - A system already under stress?
 - Future climate and impacts
 - Risk and vulnerability assessment
- The tools
 - Practices to reduce vulnerability
 - Species selection framework
 - Design guidebook

Why this project?

Metro Vancouver's Plans identify climate adaptation as an important piece of building and maintaining a livable region

Why this project?

How is our urban forest vulnerable?

 How can we use our urban forest for climate adaptation?

softscape

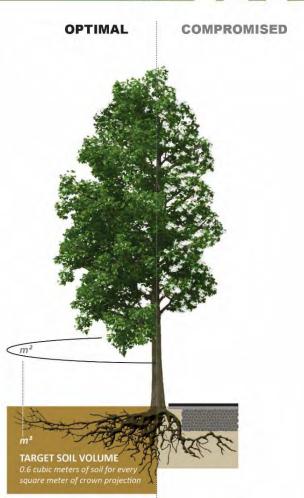
Why this project?

CONFIRM OBJECTIVES	IDENTIFY REGIONAL IMPACTS	ASSESS RISK AND VULNERABILITY	DEVELOP SPECIES FRAME	OP SPECIES FRAMEWORK & GUIDANCE	
SIGN GUIDEBOOK: MAXIMIZ	ING CLIMATE ADAPTATION BENE	FITS WITH TREES			
CONFIRM OBJECTIVES	DEFINE ADAPTATION BENEFITS	IDENTIFY PRIORITY PLANTING LOCATIONS DESIGN GUIDANCE TO		E TO MAXIMIZE BENEFIT	
Advisory Panel Meeting #1		Advisory Panel Meeting #2		Advisory Panel Draft Review	
			FINAL	REPORTS & PRESENTATION	

Advisory Panel

Name	Organization	Name	Organization
Alison Evely	Metro Vancouver	Kimberly Armour	City of Richmond
Angela Danyluk	Corporation of Delta	Kristie Goodman-Rendall	Metro Vancouver
Bill Stephen	City of Vancouver	Lanny Englund	City of Coquitlam
Conor Reynolds	Metro Vancouver	Lillian Zaremba	Metro Vancouver
Debora Harford	Simon Fraser University	Neal Aven	City of Surrey
Erika Mashig	City of New Westminster	Rod Stott	City of Maple Ridge
Gordon Jaggs	City of Richmond	Sara Barron	University of British Columbia
Jason Emmert	Metro Vancouver	Sinead Murphy	District of North Vancouver
Jonathan Budgell	City of North Vancouver	Stephen Sheppard	University of British Columbia
Josephine Clark	Metro Vancouver	Tamsin Mills	City of Vancouver
Julie Pavey	District of North Vancouver	Tom Lancaster	Metro Vancouver

The process


A system already under stress?

OPTIMAL COMPROMISED

Sources of continuous stress

- Below ground
 (e.g., soil volume, soil quality, utilities)
- At ground (e.g., permeability)
- Above ground

 (e.g., utilities, structures)

A system already under stress?

Sources of transient stress

Transient stressors include: seasonal moisture deficit, drought and heat; extreme wind and rainfall; urban activity and air pollution; pests and disease; and wildfire and flood events

Future climate + impacts

Regionally adjusted climate change projections (Pacific Climate Impacts Consortium)
Historical baseline 1971-2000 compared to 2080s Coupled Model Intercomparison Project 5 following the "business as usual" GHG emissions, RCP8.5.

		Season				
Variable	Winter	Spring	Summer	Fall	Range of Magnitude/ Direction of Change	
Manage of the managed water					↑ from 30°C to 37°C maximum temperature	
Warmer temperatures					↑ from -13°C to -5°C minimum temperature	
Heat days (above 30°C)					↑ from 2 to 29 days above 30°C (on average)	
Precipitation					↑ 12% (from 400 mm to 447 mm)	
					↓ 29% (from 206 mm to 147 mm)	
					↑ 20% (from 580 mm to 693 mm)	
Maximum length of dry spell	Annual			↑ 37% increase in the length of dry spells (from 21 to 29 days)		
Frost days	Annual			↓ 79% (from 79 to 17 days)		
Growing season length	n length Annual			个 31% (from 252 to 331 days)		

Future climate + impacts

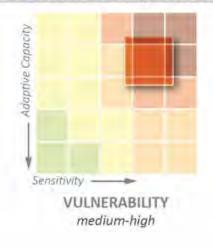
CLIMATE PROJECTIONS......EXPECTED URBAN FOREST IMPACTS

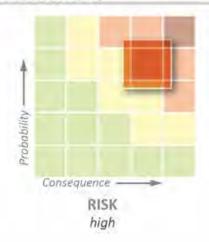
		Season				
Variable	Winter	Spring	Summer	Fall	Range of Magnitude/ Direction of Change	
Manney to me no returns					↑ from 30°C to 37°C max temperature	
Warmer temperatures					↑ from -13°C to -5°C min temperature	
Heat days (above 30°C)					↑ from 2 to 29 days above 30°C (on average)	
					↑ 12% (from 400 mm to 447 mm)	
Precipitation					↓ 29% (from 206 mm to 147 mm)	
					↑ 20% (from 580 mm to 693 mm)	
Maximum length of dry spell	Maximum length of dry spell Annual			↑ 37% increase in length of dry spells (from 21 to 29 days)		
Frost days	Annual			√ 79% (from 79 to 17 days)		
Growing season length Annual			↑ 31% (from 252 to 331 days)			

- **₩** Water
- **↑** Wildfire
- ↑ Heat
- **↑** Fresh-water flooding
- ↑ Insects, disease and invasive plants
- **↑** Air pollution
- **↑** Maladaptation
- **↑** Saltwater inundation
- **↑** Growing season
- ↑ Atmospheric CO2
- -- Windstorms

Risk + vulnerability assessment

ICLEI's workbook for municipal climate adaptation


WATER: warmer, drier summers, intensifying urban heat island effect (Impact Statement 1)


Projected effect:

- · Reduced plant available soil moisture
- · Reduced reservoir water supply
- · Increased length of drought

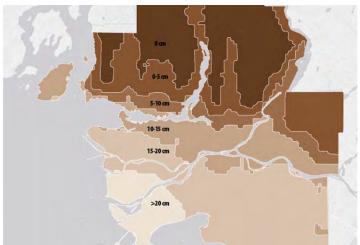
Potential impact:

 Widespread decline in tree growth and natural regeneration, and an increase in tree mortality

Scientific literature:

Robust evidence


Models:


Medium agreement

Risk + vulnerability assessment

Current zones of annual climatic moisture deficit

↓ Water

- **↑** Wildfire
- 个 Heat
- **↑** Fresh-water flooding
- ↑ Insects, disease and invasive plants
- ↑ Air pollution
- ↑ Maladaptation
- 个 Saltwater inundation

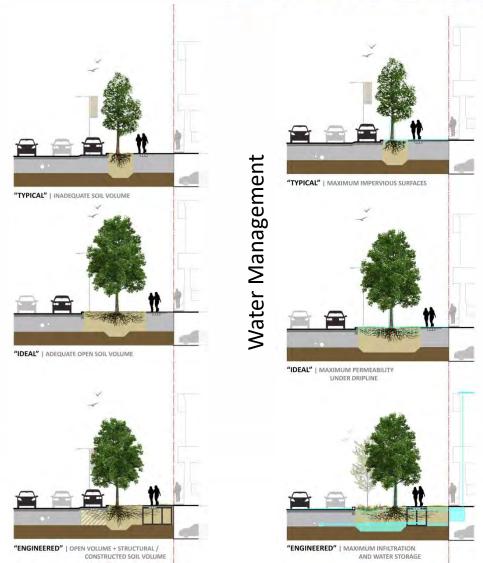
Decision-making under uncertainty

- Lack of quantitative data to estimate probability of impact or regional magnitude of impact
- Climate projections from models with inherent uncertainty

THEREFORE

Risk and vulnerability assessments are subjective <u>but</u> record our current understanding and provide a baseline for continuous improvement

The Tools

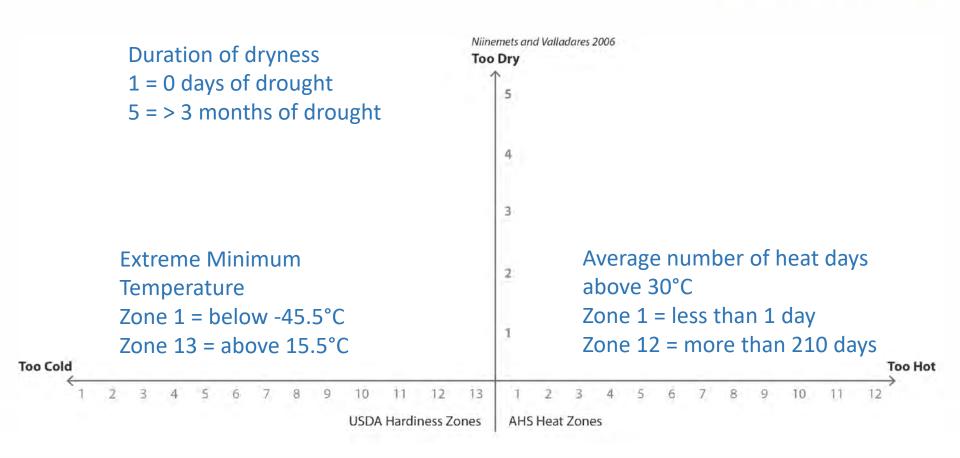

Tools for climate adaptation



- 1. Reduce Vulnerability Now
 - 1. Soil and Planting Infrastructure Guidelines
 - 2. Water Management Guidelines
 - 3. Tree Management Guidelines
- 2. Plan to Adapt to Future
 - 1. Tree adaptation: species selection
 - 2. Community adaptation: design guidebook

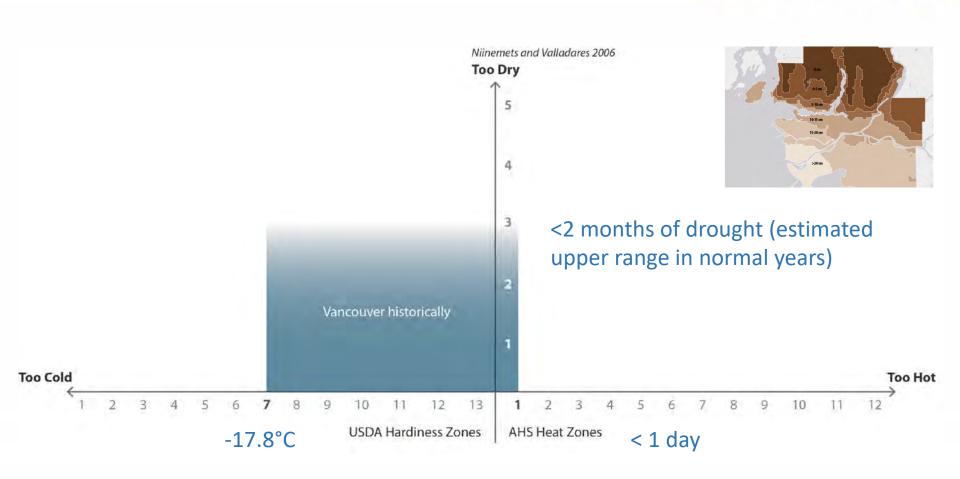
Reduce vulnerability now

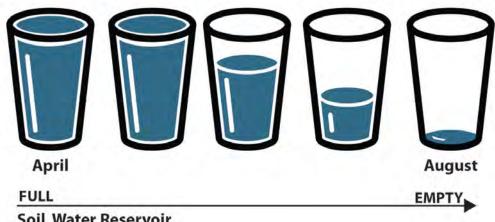
Soil + Planting Infrastructure



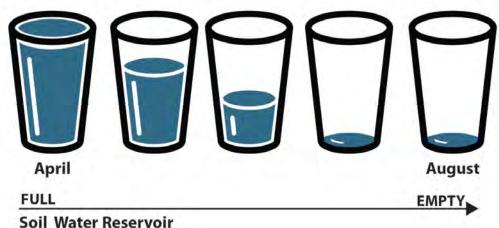
At a regional scale, what do we need for a planted tree to establish and grow in our urban forest?

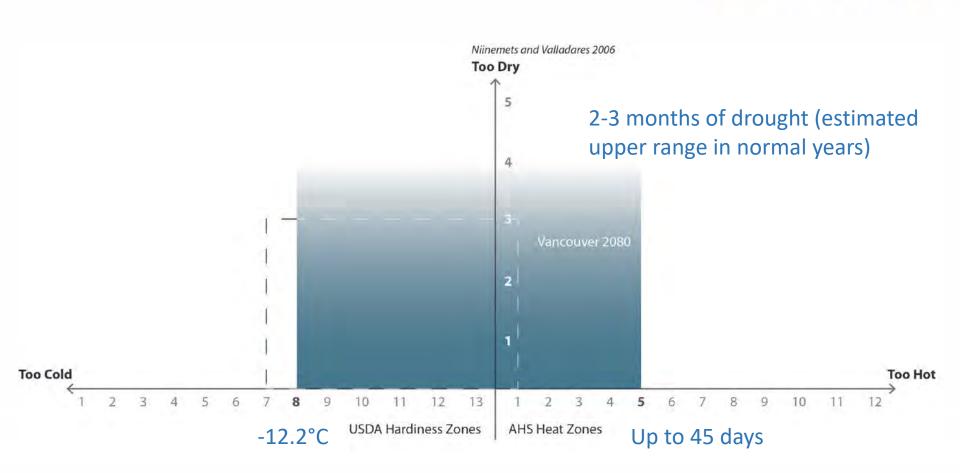
- Not too cold -> USDA Hardiness Zones
- Not too hot -> AHS Heat zones
- Not too dry -> Drought tolerance scale (Niinemets and Vallardes 2006)



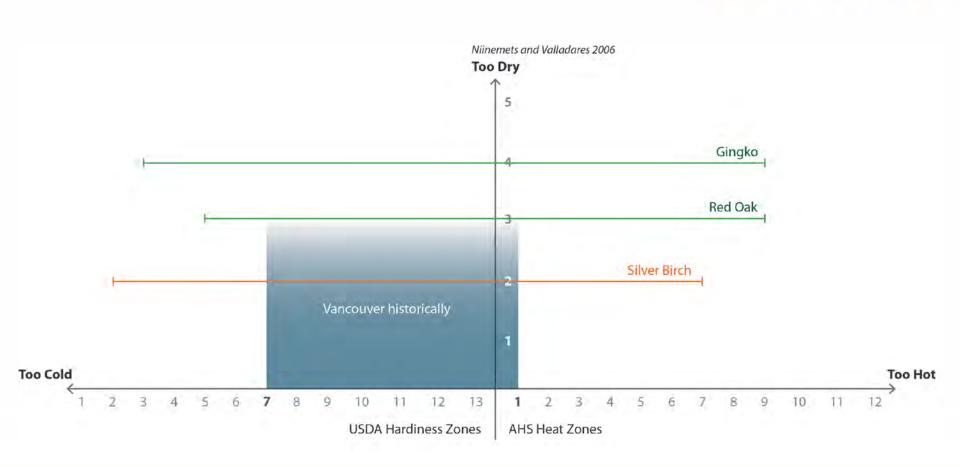


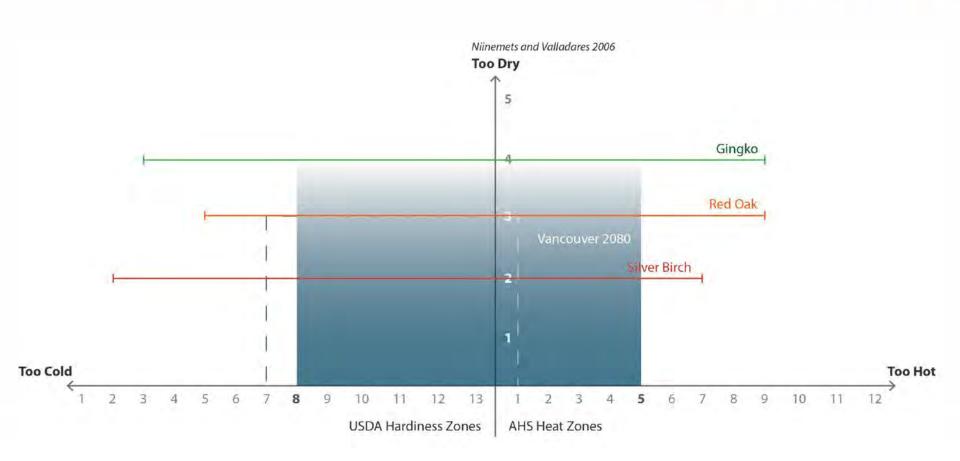
Current concept of soil-water budget

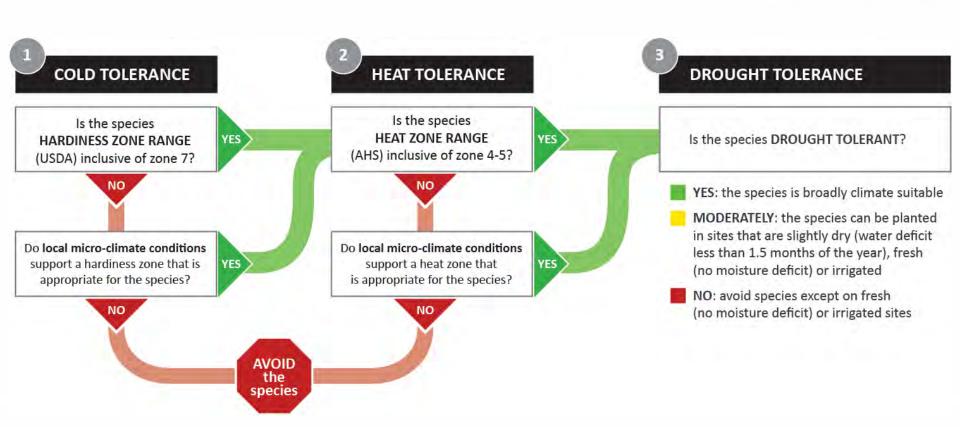

Soil Water Reservoir



Future concept of soil-water budget







Design guidebook

Major Roads (Arterials)

SPECIES SELECTION - MINIMUM REQUIREMENTS FROM PRELIMINARY SPECIES DATABASE (APPENDIX A):

- ☐ Shade density in leaf: Moderate to High
- ☐ Evergreen: No
- ☐ Suitable location: street tree pits/boulevards/medians < 3 m
- ☐ Drought tolerance: Moderate to High
- VOC rating: Low to Moderate
- ☐ Wind breakage: Low to Moderate
- ☐ Noted public sources of complaints: None

Prior to making a selection, refer back to the site considerations checklist (pg.10)

EXAMPLES | trees that meet the above requirements

refer to the Preliminary Species Database (Appendix A) or other resources for additional options

LARGE TREES • Ginkgo (Ginkgo biloba) – male trees only

MEDIUM TREES • Manna ash (Fraxinus ornus)

SMALL TREES • Japanese snowbell (Styrax japonicus)

Ongoing work

- Metro Vancouver expanding species database to 140 tree species
- Content conversion to online searchable database and design guidebook tools
- Municipalities incorporating content into their own plans

Merci! Thank you!

Amelia Needoba

amelia@diamondheadconsulting.com

Urban Forest Climate Adaptation Framework:

http://www.metrovancouver.org/services/regionalplanning/PlanningPublications/UrbanForestClimateAdaptationFramework TreeSpeciesSelection.pdf

Design Guidebook:

http://www.metrovancouver.org/services/regional-planning/PlanningPublications/DesignGuidebook-MaximizingClimateAdaptationBenefitswithTrees.pdf

Report authors: Amelia Needoba | Edward Porter | Camille Lefrançois | Dr Cynnamon Dobbs | J. Brett Allen | Trevor Cox | Mike Coulthard

Metro Vancouver Project Manager: Erin Embley | Josephine Clark

